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The authors have conducted a numerical experiment on which they have based an 
engineering technique for determining the heat transfer characteristics. 

Among the possible uses of fusible substances for heat energy storage there is great in- 
terest in their use in solar energy storage systems. In the last decade the number of papers 
addressing this topic has increased appreciably. In experimental studies, conducted with vari- 
ous substances and geometrical systems [1-4], the main attention has been paid to the role of 
free convection, whose influence on the melting process has precluded the use of analytical 
and approximate solutions based on models of "pure" heat conduction. 

Many numerical investigations have also addressed this topic. For example, [5, 6] used 
simplified transfer equations to analyze free convection in melting, respectively, around a 
vertical cylinder and near a vertical wall. References [7-9] gave results of melting outside 
and inside a horizontal cylinder and near a vertical wall, mapping the region into a rec- 
tangle. 

The present paper examines melting of a substance located in a closed volume, with heat- 
ing from below. The following assumptions are made: i) the Boussinesq approximation is 
used for the liquid phase; 2) the phase densities are the same; 3) the flow is laminar and two- 
dimensional. In reality the flow will be two-dimensional in the case when the thickness of 
the closed volume is appreciably less than its length and height. 

To overcome the difficulties associated with a time-dependent melt region, the latter is 
transformed into a rectangle with fixed boundaries [i0]. We write the dimensionless equations 
describing the process in the transformed region in the following generalized form (Table i): 

~ S i e ~  ~ u ~ v ~  n = FA~ ~ S. ( 1 )  

In integrating this equation we use the conservative form for representing the convective and 
diffusion terms: 

i): 

ucD~ q- v~Dn = (uCD h Jr (vCD)~ - -  q) (ut q- %), ( 2 )  

Aq9 = (o~(1)g -+- [3q~n) ~ -q- ([~(I)t q- "fq)n)n- ( 3 ) 

The transformed coordinates and the position of the phase boundary have the form (Fig. 

x -- xl Y - -  Ya x2 - -  xl 
------, n = - - ,  s---- (4) 

x2 -- xl , Y2 -- Yl Y2 -- Yl 

I t  i s  a s s u m e d  a t  t h e  i n i t i a l  t i m e  (~ = 0)  t h a t  t h e  s y s t e m  t e m p e r a t u r e  i s  u n i f o r m  (e  = 0 ) ,  
and then the temperature of the heating surface is increased in a step manner to some steady 

TABLE i. 
for Eq. 

Values of Generalized Parameters 
(I) 
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i. Schematic of the model problem. 
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Fig. 2 

Fig. 2. Behavior of the integral characteristics of the pro- 
cess with time: Ra = 2.10 6 , Ste = i. The broken lines cor- 
respond to the model with pure heat conduction. 

value (8 = i). Since the computing mesh covering the liquid phase cannot be infinitely fine, 
the calculation begins with the condition of practically no convective motion in the melt: 

So < (~a~/~a) ~/~, (5) 

and here the interface surface is parallel to the heating surface. The value of the internal 
Rayleigh number Ra*h corresponding to the appearance of hydrodynamic instability was defined 
in [ii], and is analogous to the critical Rayleigh number in the classical Benard problem. 

Knowing the initial thickness of the melt s o and using the exact solution of [12], we 
can determine the dimensionless time corresponding so So and the temperature distribution: 

Zo = s~ S t e /4aL  Oo = 1 -- err ([a) /erf  (~), 

where o is found from the equation 

WSte = exp ( - -  o2) l y~  err (~). 

Here, to single out the processes occurring in the liquid phase, 

( 6 )  

(7) 

it is assumed that the solid 
phase is at the melting temperature, i.e., that the heat transferred through the melt is com- 
pletely stored at the interface boundary. Reference [13] has estimated how this assumption 
affects theheat and mass transfer characteristics. Following this simplification, the energy 
balance at the phase interface boundary can be written as follows: 

- -  s~O~l~=~ = s,. (8) 

The remaining boundary conditions have the form: 

~ = ~ 1 7 6  * = ~ 1 7 6  } ~ , o = o ,  

~ = 0 ,  1, 0~----0, q ~ = O ,  co =TcD~n. 

(9) 

In constructing the finite-difference approximation of Eq. (i) we used a control volume 
method, along with an exponential scheme for calculating the coefficients [14]. The result- 
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ing finite-difference analog was solved using the SOR method. The variables were calculated 
in the following order: i) construction of the ~-~ mesh; 2) computation of the initial con- 
ditions of Eqs. (5)-(7); 3) calculation of the transformation coefficients ~, 8, y, J, P, Q 
on the basis of Eqs. (4) and (8); 4) alternate calculation of the coefficients and solution 
of the finite difference analog for ~, ~, 8; 5) calculation of the boundary conditions of Eq. 
(9); 6) repeat of steps 3-5 to achieve the required step size. 

The basic calculations were performed on a uniform ii x 41 mesh, and a check calculation 
made on a 17 • 48 mesh. The error in all the variables did not exceed Ii - ~[k)i,./ 

f % 

was 
#(k+l)i jl < 10-3" The time step was chosen from the stability conditions and varied ~uring 
the cal~ulation as a function of the number of iterations over the variable from i0 -s to 1.5. 
i 0  - ~  " 

It can be seen from analysis of Table i that to characterize the process fully one must 
assign the Ra, Ste, and Pr numbers. Since it is known from previously published studies [5, 
6] that in the region Pr ~ i for the type of problem examined the results are practically 
independent on the last of these, in this work we conducted two series of calculations - with 
fixed Ste = 0.5 and Pr = i, and with fixed Ra = 5.10 s and Pr = i. The ranges of variation were 
chosen from the operating conditions of the heat energy storage systems: Ste = 0.063-1.000, 
Ra = 5.105-107 . 

It should be noted that all the calculations were begun with a nonzero distribution of 
and ~, corresponding to a very small initial slope of the cavity (i0-~). In actuality, this 

kind of perturbation is inevitable because nonuniformities of some kind are present in the 
liquid phase. 

The integral characteristics describing the dynamic structure of the melt as a whole are 
shown in Fig. 2. To better understand the processes occurring in the melt, we used visual- 
ization during the numerical experiment. Figure 3 shows instantaneous pictures of the flow 
and the heat transfer, obtained with the aid of a special program, including linear inter- 
polation of intermediate values of the function. On the basis of these data (in a fuller 
volume) we describe and analyze the process below. 

Fig. 3. Instantaneous pictures of the flow (on the left), and heat transfer in the melt 
(on the right): Ra = 2.106 , Ste = i, ~ = 0.035 (a), 0.045 (b), 0.055 (c). 
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TABLE 2. Characteristics of 
the Melting Process for the 
Heat Conduction Regime 

Ste • B w [ Bf 

! ,000 
0,500 
0,250 
O, 125 
0,063 

~0 

0,124 
O, 132 
O, 136 
O, 139 
O, 140 

TABLE 3. Characteristics of the 
Melting Process for the Pseudo- 
stationary Convection Regime 

Ste Ra $ C 
[ 

1,120 [ 0,770 1,000 
1,075 [ 0,868 0,500 
1,038 0,938 0,250 
1,023 0,962 0,125 
1,012 0,980 0,063 

1,000 -+0 

14000~12%; 
9000• 
6000___5% 
4300~3% 
3500!3% 

17os (?) 

C w C] 

0,153 0,115 
0,148 0,119 
0,135 0,121 
O, 128 O, 122 
0,125 0,122 

40,123 

The start of the calculation is accompanied by a redistribution of the initial perturba- 
tions, which are gradually damped. In the vicinity of the value Ra*h = 1700 [ii], we observe 
a "neutral" equilibrium (~max ~ -~min ~ 10-4)- A subsequent increase of the melt thickness 
leads to a gradual increase of the convection intensity, but the heat transfer mechanism re- 
mains conduction as beofre (see Fig. 2, section BC). One can call this period of melting the 
thermal inertia period, whose duration increases with increase of the Ste number. This peri- 
od is characterized by the presence of alternating weak vortex cells of opposite sign, their 
number depending on the Ra number and on the dimensionless melt thickness. It should be 
noted that in individual cases we observed an odd number of vortices, but because of its in- 
stability this kind of structure quickly underwent transition to an even number of cells. 

The thermal inertia period is ended by the onset of a thermal instability. This short- 
duration transition period is associated with a sharp increase of intensity of the vortices 
and of the heat transfer (section CD). 

The state that sets in subsequently is characterized by quasistationary vortex cells 
which transmit a practically constant amount of heat through the melt. An almost isothermal 
core and large temperature gradients form near the heat transfer surfaces (Fig. 3a). Because 
of the increased heat removal surface more energy is absorbed on it than in the case when this 
surface remains planar. Consequently, there is some increase of the bulk temperature of the 
melt (see Fig. 2, section DE). 

The most interesting feature of this melting period is the fact that the average speed 
of motion of the melt front, equal to Nuf, is constant, while the average coordinate of the 
interface boundary (or the melt mass) depends linearly on time. 

Further increase of the melt region leads to the situation where the strongly deformed 
vortices can no longer retain their shape. This results in the start of a general redistribu- 
tion of the flow, accompanied by relative displacement of the vortices, and expulsion of some 
due to increased size of neighboring vortices (Fig. 3b, c). The rather high degree of sym- 
metry observed prior to this breaks down, the flow becomes unstable, and there may be low-fre- 
quency oscillations of the heat transfer characteristics. The redistribution of the heat flux 
leads to a smoothing of the interface surface. In spite of the fact that the intensity of 
vortex motion increases in this melting period, nevertheless the heat transfer decreases. This 
latter circumstance is apparently linked with an increase of the size of the vortex cell, which 
now itself stores some part of the heat energy transferred through the melt. This is evidenced 
by an increase of the melt bulk temperature. 

Because of the excessive length of the calculations, this period was reached only for one 
set of the governing parameters. The first two basic melting periods are of interest for prac- 
tical purposes, as a rule. 

For the melting period, characterized by heat conduction, the Nusselt number on both of 
the heat transfer surfaces and the position of the phase interface surface can be determined 
by using the exact solution: 

N u  = B/s, s = • [ / - ~  • == 2o i l .  S t ~ ,  ( 1 0 )  

where the quantities K, Bw, and Bf, which depend only on the Ste number, are given in Table 2. 

For the subsequent pseudostationary convection regime it was found, from analysis of the 
parametric dependence on the Ra number, that the average values of Nu number on these surfaces 
are given by the relation 
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N--u= CRa 1/3 (11)  

We n o t i c e  t h a t  t h e  c h a r a c t e r i s t i c  l e n g t h  c o n t a i n e d  on t h e  l e f t  and r i g h t  s i d e s  o f  Eq. (11)  i s  
c o n t r a c t e d .  T h i s  means t h a t  t h e  h e a t  t r a n s f e r  c o e f f i c i e n t  i s  n o t  d e t e r m i n e d  by t h e  l e n g t h  o f  
t h e  c l o s e d  vo lume .  

I n  Eq. (11)  t h e  l o c a l  Nu numbers  were  c a l c u l a t e d  on b o t h  b o u n d a r i e s  f rom t h e  r e l a t i o n  

Nu : - - s a O ~ .  (12) 

For the phase interface this kind of determination is arbitrary, but its use is convenient, 
since in that case the Nu number is equal to the local velocity of motion of the interface, 
as follows from Eq. (8). Averaging Eq. (8) and taking account of Eq. (12), we obtain the de- 
pendence 

Nu~ = d ~ ,  ' (13)  

and integration of this in the time interval of interest to us gives 

~ :  CfRa U3 (T --~C) + ~' (14) 

i.e., the average melt thickness, as noted above, depends linearly on time for the melting 
period considered. This behavior corresponds to the experimental results on melting of paraf- 
fin in an analogous geometry [i]. 

We shall determine the unknown quantities ~c and Sc appearing in Eq. (14): 

~c = (Sc/• s c=  (Ro~/Ra) U3" (15)  

Thus, to evaluate the integral characteristics of the melting process in a closed cav- 
ity with isothermal heating from below, the following method is proposed: i) determine the 
Ra and Ste numbers; 2) determine from Table 2 and Eq. (i0) the characteristics for the heat 
conduction regime; 3) determines Cw, Cf, and the internal critical Rayleigh number Ra* c from 
Table 3; 4) calculate critical values of time and melt thickness from Eq. (15); and, 5) cal- 
culate the Nu number and the mass of melted substance on the basis of Eqs. (ii) and (14). 

In conclusion, we note some special features of the results. First, the origin of the 
thermal instability is displaced relative to the hydrodynamic origin, and the Ra*c number de- 
pends more strongly on the Ste number than does Ra*h value found from linear stability theory 
[ii]. Secondly, the quantities Cw and Cf are also determined by the Ste number, although 
they depend only weakly on the latter in the region Ste + 0. 

NOTATION 

r generalized variable; x, y, physical coordinates; t, time; 6, q, transformed coordin- 
ates; S, dimensionless coordinate of the phase interface; ~ = FoSte, dimensionless time; ~, 
m, dimensionless stream function and vorticity; 8 = (T - Tf)/(Tw - Tf), dimensionless tempera- 
ture; u = ~(Ste $~ - J~q) + rP, v = s(Ste q~ + J~$) + FQ, transformed velocities; a = ($~ + 

~) h2, ~ = (~xDx + Syny) h2, ~ = (~ + q$)h 2, J = (~xqv - ~vqx )h2, P = aS + ~n - (~xx + Syy) h2, 
Q = ~ + YD - (qxx + qYY )h2, transformation coefficie6ts; ~0 = at/h = , Ste = c(T w - Tf)/L, 

^ 3 ---- ^ Ra = g8(T w - Tf)h /~a, Pr = ~/a, Nu = ah/k, Fourier, Stefan, Rayleigh, Prandtl, and Nusselt 
numbers; Ra* = gB(TW - Tf)(x 2 - Xl)3/~a = Ra~, internal Rayleigh number; h = Y2 - Yl, char- 
acteristic length; a, thermal diffusivity; c, specific heat; T, temperature; L, specific 
heat of fusion; ~, kinematic viscosity; g, acceleration due to gravity; ~, coefficient of 
thermal expansion; ~, heat removal coefficient; ~, thermal conductivity. Subscripts: x, y, 
t, 6, q, ~, differentiation; O, initial time value; h, hydrodynamic; c, critical; w, heating 

I 1 I 

wall; f, phase interface surface. Averaging: ~= .I @d~, $= .I .f Od~d~. 
0 0 0 
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DETERMINATION OF THE HEAT FLUX ON THE SURFACE OF COMPOSITE MATERIALS 

UPON INTERACTION WITH HIGH-ENTHALPY GAS STREAM 

V. E. Abaltusov, S. F. Bachurina, G. Ya. Mamontov, 
G. A. Surkov, and A. S. Yakimov 

UDC 536.245.022 

The article deals with the determination of heat fluxes on the surfaces of 
composite materials upon interaction with a gas stream of high enthalpy. 

For the calculation of processes of heat and mass exchange occurring upon interaction of 
composite heat insulating materials with a gas stream, and for the evaluation of the efficiency 
of the material it is indispensable to know the boundary conditions on the surface, in particu- 
lar the specific heat flux [i, 2]. It is difficult, and in many cases altogether impossible, 
to measure it directly because of the physicochemical transformations occurring on the surface 
of and inside the material. The problem of finding specific heat fluxes usually reduces to the 
solution of the inverse problem for the equation of nonsteady heat conduction on the basis of 
experimentally measured temperature fields in the material. 

The present work involves the determination of the heat fluxes on the interface of the 
media by different methods on the basis of the experimental data in measurements of the surface 
temperature and of the temperature field within the bulk of the specimen of composite material. 

The experiments were carried out in jets of air plasma of an electric-arc plasmatron ~DP- 
104A and a vortex plasmochemical reactor (PCR) with the following parameters of the stream: 
enthalpy of the gas H0 = 2-10 MJ/kg; Reynolds numbers Re = (0.5-5).103 , Ma ~ 0.3. The gas 
temperature in the jet was determined by the method of relative intensities with a spectro- 
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